If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(x^2+3)=35
We move all terms to the left:
5(x^2+3)-(35)=0
We multiply parentheses
5x^2+15-35=0
We add all the numbers together, and all the variables
5x^2-20=0
a = 5; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·5·(-20)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*5}=\frac{-20}{10} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*5}=\frac{20}{10} =2 $
| x2+4x-40=-8 | | 12-3p=p | | 5(2x-1)^2=0 | | X-0.7x=40 | | 27n-225=180 | | 8a+3=5+7a | | 7x-2=5x+58 | | 20x^2+36x=-7 | | 4x-16=2x+12 | | 9^x-2=27 | | 3(-4x+4)+3x-1=-28 | | 2x-5=10x-8 | | 6(s−94)=12 | | 5x=-86+360 | | v^2-v-27=0 | | d/46=15,180 | | x+5x+(5x)+24=145 | | w^2+70w-40=0 | | 24x+27=25x-35 | | 15,180×d=46 |